Пифагор

Пифагор

Приблизительно в 530 году Пифагор наконец возвратился в Грецию и вскоре переселился в Южную Италию, в г.

Кротон. В Кротоне он основал пифагорейский союз, который был одновременно философской школой, политической партией и религиозным братством. Здесь были соединены философия с жизненной практикой, указывающей человеку достойный путь к судьбе, ожидающей его после смерти. Школа жила общинами со строгой дисциплиной нравов, от учеников требовалось целомудрие и воздержание.

Однако, аскетизм не был идеалом пифагорейцев; брак являлся для них священным понятием. В школу, наряду с юношами, принимались и девушки.

Обучение было многоступенчатым и далеко не каждому давалось сокровенное знание. Лишь те, кто успешно прошёл все испытания, допускался во внутренний двор дома Учителя. Здесь Пифагор наставлял своих ближайших учеников.

Отсюда и берут свое начало названия эзотерическое (т.е., то что внутри) и экзотерическое (т.е., то что вне) учение.

Строгий образ жизни пифагорейцев, их созерцательная философия, благожелательность к человеку и стремление делать добро, оказать помощь, привлекали к ним многих людей. Союз вскоре стал центром политической и духовной жизни всего Кротона. Школа Пифагора дала Греции целую плеяду талантливых философов, физиков и математиков. С их именем связаны в математике систематическое введение доказательств в геометрию, рассмотрение ее как абстрактной науки, создание учения о подобии, доказательство теоремы, носящей имя Пифагора, построение некоторых правильных многоугольников и многогранников, а также учение о четных и нечетных, простых и составных, о фигурных и совершенных числах, арифметических, геометрических и гармонических пропорциях и средних.

Ученики Пифагора расселились по Греции и ее колониям, где организовали школы, в которых преподавали главным образом арифметику и геометрию.

Сведения об их достижениях содержатся в сочинениях позднейших ученых – Платона, Аристотеля и других.

Учения Пифагора и его учеников охватило гармонию, геометрию, теорию чисел, астрономию. Но более всего пифагорейцы ценили результаты, полученные в теории гармонии, так как они подтверждали их идею, что числа определяют все.

Некоторые древние ученые считали, что понятие о золотом сечении А:Н=Р:В , где Н и Р – гармоническая и арифметическая средняя между А и В , Пифагор заимствовал у вавилонян.

Теорема о соотношении между сторонами прямоугольного треугольника, открытие которой приписывают Пифагору, была известна и грекам, а еще раньше египтянам, вавилонянам, китайцам, по крайней мере для частных случаев.

Вероятнее всего Пифагор нашел доказательство этой теоремы, которая до нас не дошло. Также открытие факта, что между стороной диагонали квадрата не существует общей меры, было самой большой заслугой пифагорейцев. Это открытие вызвало первый кризис в истории математики.

Пифагорейское учение о целочисленной основе всего сущего больше невозможно было признавать истинным.

Поэтому пифагорейцы пытались сохранить свое открытие в тайне и создали легенду о Гиппасе Метапонитском, якобы погибшем при попытке разгласить эту тайну.

Пифагору приписывают также теорему о сумме внутренних углов треугольника и задачу о делении плоскости на правильные многоугольники (треугольники, квадраты и шестиугольники). Есть сведения, что Пифагор построил «космические» фигуры, то есть пять правильных многогранников. Но вероятнее, что он знал только три простейших правильных многогранника: куб, четырехугольник, восьмигранник. Школа Пифагора много сделала, чтобы придать геометрии характер науки.

Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Геометрическое доказательство того, что суммы нечетных последовательных чисел, начиная с 1, является точными квадратами ( 1+3=2² и т.д.) и всякое нечетное число является разностью двух последовательных квадратов ( 2²–1²=3, 3²–2²=5 и т.д.). Пифагор много занимался пропорциями, прогрессиями и подобием фигур. Он один из первых пришел к выводу, что земля имеет форму шара и является центром Вселенной, что Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.

Именем Пифагора назван кратер на видимой стороне Луны. В возрасте 60 лет Пифагор женился на своей ученице Феано, девушке удивительной красоты, покорившей сердце мудрого философа своей чистой и пламенной любовью, безграничной преданностью и верой. Феано дала Пифагору двух сыновей и дочь, все они были верными последователями своего Великого отца. Один из сыновей Пифагора стал впоследствии учителем Эмпидокла и посвятил его в тайны пифагорейского учения.

Дочери своей Дано Пифагор доверил хранение своих рукописей. После смерти отца и распада союза Дано жила в величайшей бедности, ей предлагали большие суммы за манускрипты, но верная воле отца, она отказалась отдать их в посторонние руки. 30 лет прожил Пифагор в Кротоне. За это время ему удалось осуществить то, что оставалось мечтою многих посвященных: он создал поверх политической власти мудрую власть высшего знания, подобную древнеегипетскому жречеству. Совет Трехсот, созданный и возглавляемый Пифагором, был регулятором политической жизни Кротона и распространял свое влияние на другие города Греции в течение четверти века. Но ничто так не раздражает посредственность, не вызывает зависть и ненависть, как владычество великого ума. Мятеж против правления аристократической партии, вспыхнувший в Сибарисе, явился началом гонения на пифагорейский союз.

Многие из учеников погибли под обломками пылающего здания школы, другие погибли голодной смертью в храмах. О времени и месте смерти самого Пифагора достоверных сведений не сохранилось.

Таможенное право

Медицина

Литература, Лингвистика

Технология

Физика

Культурология

История

Уголовное право

Разное

Философия

Экскурсии и туризм

Маркетинг, товароведение, реклама

Программирование, Базы данных

Бухгалтерский учет

Микроэкономика, экономика предприятия, предпринимательство

Охрана природы, Экология, Природопользование

Политология, Политистория

Право

География, Экономическая география

Физкультура и Спорт

Педагогика

Историческая личность

Иностранные языки

Экономическая теория, политэкономия, макроэкономика

Правоохранительные органы

Материаловедение

Юридическая психология

Религия

Муниципальное право России

Ценные бумаги

Биология

Геология

Трудовое право

Радиоэлектроника

Социология

Транспорт

Психология, Общение, Человек

Программное обеспечение

Компьютеры и периферийные устройства

Международные экономические и валютно-кредитные отношения

Математика

Искусство

Металлургия

Техника

Менеджмент (Теория управления и организации)

Сельское хозяйство

Теория государства и права

Военная кафедра

Ветеринария

Теория систем управления

Банковское дело и кредитование

Международное частное право

Государственное регулирование, Таможня, Налоги

Химия

История экономических учений

Компьютерные сети

Здоровье

Налоговое право

Финансовое право

Биржевое дело

Музыка

Астрономия

Экологическое право

Римское право

История политических и правовых учений

Криминалистика и криминология

Семейное право

Административное право

Экономико-математическое моделирование

Пищевые продукты

Жилищное право

Подобные работы

Золотое сечение

echo "Практическое применение……………….. Литература……………………………………………………….. 2 3-4 5-7 8 9 10-12 13-15 16-17 18 19 19 1.Введение. Пропорция золотого сечения. Ф и . 'Геометрия обладает двумя великими

Сравнения высших степеней(Конгруенції вищих степенів )

echo "Невизначені рівняння 1-го степеня почали розглядатися ще індуськими математиками приблизно з V століття. Деякі такі рівняння з двома і трьома невідомими з'явилися в зв'язку з проблемами, що вини

Теория устойчивости

echo "Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это оп

Кватернионы

echo "Выбираем две оси и начало отсчета. Для каждой точки плоскости сопоставляем ее координаты (x; y). Эта пара будет называться дуплетом. Чтобы сделать дуплет числом, нужно научиться “складывать” и “

Замечательные кривые в математике. Прямая, окружность, циклоида, кривая кратчайшего спуска, спираль Архимеда, лемниската, Т. Барианшона, Т. Паскаля

echo "Возьмем нить, концы ее привяжем к двум булавкам и воткнем эти булавки в лист бумаги, оставляя сначала нить ненатянутой. Если оттянуть теперь нить с помощью вертикально поставленного карандаша и

Поверхности второго порядка

echo "Уравнение (1) мы будем называть общим уравнением поверхности второго порядка. Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декар

Отношение сознания к материи: математика и объективная реальность

echo "Содержание 1. Введение ................................................................................................................ 3 2. Экскурс в историю ...................................

Шпаргалки по математическому анализу для 1-го семестра в МАИ

echo "Возьмем ' e >0 $ d завис от e такое что d ( e )>0 такое что ' х, 0 x - a / d => / f ( x )- A / e => / j ( x )/=/ f ( x )- A / e таким образом j ( x ) – бмф при х ® а пусть f ( x )= j ( x )+ A гд